Abstract:
The paper considers properties of likelihood ratio determined by (1.1). We prove that the distributions in functional space $\mathbf C_0$, generated by the processes $Z_n(\theta)$$(-\infty<\theta<\infty)$ tend to the distribution in $\mathbf C_0$, generated by the process $Z(\theta)$ defined by (2.1), provided conditions I–IV of section 1 are satisfied. As a consequence, we have asymptotical normality of the maximum likelihood estimator without assumptions of continuity of $\log f(x,\theta)$ and existence of $f''_{\theta\theta}(x,\theta)$. We deduce several other consequences of this result useful in the second part of the paper.