RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1973 Volume 18, Issue 1, Pages 78–93 (Mi tvp2682)

This article is cited in 38 papers

Asymptotical behaviour of some statistical estimators. II. Limiting theorems for the a posteriory density and Bayesian estimators

I. A. Ibragimov, R. Z. Khas'minskii

Moscow

Abstract: In the second part of the paper we use propositions, methods and results of the first part appeared in the previous issue of this journal.
Under conditions I–IV of § 1, we prove theorems about behaviour of the a posteriory density (similar to the well-known Le Cam's results [2]), Bayesian estimators $t_n^{(a)}$ for the risk function $\|\theta\|^a$, Pitman's estimators of the location parameter etc. We prove, for example, that the estimators $t_n^{(a)}$, for different $a\ge1$, are equivalent in the sense that
$$ \mathbf E\{\sqrt n\bigl|t_n^{(a_1)}-t_n^{(a_2)}\bigr|\}^p\underset{n\to\infty}\longrightarrow0\quad(p>0). $$


Received: 05.01.1971


 English version:
Theory of Probability and its Applications, 1973, 18:1, 76–91

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025