Abstract:
Let $\xi(t)$, $t\ge0$, be a stable process with characteristic function (1).
The joint distributions of random variables
$$
\overline\xi(t)=\sup_{0\le u\le t}\xi(u),\quad\overline\xi(t)-\xi(t),\quad T(t)=\inf\{u\colon\overline\xi(u)-\overline\xi(t),\quad0\le u\le t\}
$$
is obtained.