RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2003 Volume 48, Issue 3, Pages 596–608 (Mi tvp274)

Short Communications

Adjusted Euler–MacLaurin predictor for integrating smooth spatial processes

K. Benhenni, R. Drouilhet

Université Pierre Mendès France - Grenoble 2

Abstract: We consider the problem of predicting integrals of a spatial stationary process $Z$ over a unit square. We construct predictors based on a systematic sampling of size $m^2$ by approximating the existing mean squared derivatives of the process in the two-dimensional Euler–MacLaurin formula by finite differences up to some appropriate order. We show that if the spectral density satisfies $f_{Z}(\omega) =o(|\omega|^{-p})$ for any fixed positive integer $p$, the corresponding mean squared error is of order $m^{-p}$.

Keywords: spatial stationary process, predictor, Euler–MacLaurin formula.

Received: 17.09.1999

Language: English

DOI: 10.4213/tvp274


 English version:
Theory of Probability and its Applications, 2004, 48:3, 506–520

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024