RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1974 Volume 19, Issue 1, Pages 131–139 (Mi tvp2763)

This article is cited in 49 papers

On the integral mean squared error of some non-parametric estimates of the probability density

È. A. Nadaraya

Tbilisi Ivane Javakhishvili State University, Ilia Vekua Institute for Applied Mathematics

Abstract: It is shown that in estimating the density $p(x)$ by means of the statistics (1) the sequence $\tau_n=\tau_n^0$ is optimal in the sense of the minimum integral mean squared error $U_n^2(\tau_n)$. An estimate $\widehat\tau_n=\widehat\tau_n(X_1, X_2,\dots,X_n)$ for $\tau_n^0$ is constructed and a theorem is proved that gives conditions under which $U_n^2(\widehat\tau_n)\sim U_n^2(\tau_n^0)$.

Received: 04.05.1972


 English version:
Theory of Probability and its Applications, 1974, 19:1, 133–141

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025