RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2003 Volume 48, Issue 2, Pages 301–320 (Mi tvp286)

This article is cited in 5 papers

Estimation of multivariate regression

I. A. Ibragimov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $(X,Y)$ be a random vector whose first component takes on values in a measurable space $(\mathfrak{X},\mathfrak{A},\mu)$ with measure $\mu$ and $Y$ be a real-valued random variable. Let
$$ f(x)=E\{Y\mid X=x\} $$
be the regression function of $Y$ on $X$. We consider the problem of estimating $f(x)$ by observations of $n$ independent copies of $(X,Y)$ given $f\inF$, where $F$ is an a priori known set with specified metric characteristics such as $\varepsilon$-entropy or Kolmogorov widths.

Keywords: additive regression, nonparametric estimation, regression, regression function.

Received: 15.11.2002

DOI: 10.4213/tvp286


 English version:
Theory of Probability and its Applications, 2004, 48:2, 256–272

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025