RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1974 Volume 19, Issue 3, Pages 514–532 (Mi tvp2924)

This article is cited in 8 papers

Some results concerning small stochastic perturbations of dynamical systems.

Yu. I. Kifer

Moscow

Abstract: Let
$$ dx_t^\varepsilon=\varepsilon dw_t+b(x_t^\varepsilon)\,dt $$
and $p^\varepsilon(t,x,y)$ be the transition probability density of $x_t^\varepsilon$. In section 1, we find an exact asymptotics of $p^\varepsilon(t,x,y)$ as $\varepsilon\to0$. Section 2 is devoted to investigation of the behaviour of $\mathbf P_x^\varepsilon\{x_\tau^\varepsilon\in\Delta,\ \tau\le T\}$ as $\varepsilon\to0$, where $\Delta$ is an open subset of the boundary $\Gamma$ of a bounded domain $G$ and $\tau$ is first exit time from $G$ $(x\in G)$.
Let $b(x)=Bx$, where $B$ is a matrix the eigenvalues of which have negative real parts. In this case we get an exact asymptotics of $\mathbf P_x^\varepsilon\{x_\tau^\varepsilon\in\Delta\}$ as $\varepsilon\to0$.

Received: 04.06.1973


 English version:
Theory of Probability and its Applications, 1975, 19:3, 487–505

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024