RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2003 Volume 48, Issue 2, Pages 403–411 (Mi tvp294)

This article is cited in 6 papers

Short Communications

Integral Equations and Phase Transitions in Stochastic Games. An Analogy with Statistical Physics

V. P. Maslov

A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences

Abstract: Maximization of the Kullback–Leibler information is known to result in general Esscher transformations. The Bose–Einstein and Fermi–Dirac statistics in a probability space $(\Omega, \mathcal{F},P)$ give rise to another kind of information, namely,
$$ S_B=\int \log\bigg(1+\frac{dP}{dQ}\bigg)\,dQ+ \int \log\bigg(1+\frac{dQ}{dP}\bigg)\,dP $$
for the Bose statistics and
$$ S_F =\int\log\bigg(\frac{dP}{dQ}-1\bigg)\,dQ -\int\log\bigg(1-\frac{dQ}{dP}\bigg)\,dP, \qquad \frac{dP}{dQ} >1, $$
for the Fermi statistics. This information generates measure transformations corresponding to these statistics. In the presence of a payoff matrix, these transformations vary in accordance with the integral equations given in the paper. We give examples of financial games corresponding to Bose and Fermi statistics.

Keywords: Bose statistics, Fermi statistics, payoff matrix, Esscher transformation, entropy, phase transition, integral equation, Kullback–Leibler information, thermodynamics, statistical physics, dyadic games.

Received: 17.03.2003

DOI: 10.4213/tvp294


 English version:
Theory of Probability and its Applications, 2004, 48:2, 359–367

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024