RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1978 Volume 23, Issue 1, Pages 109–119 (Mi tvp2979)

This article is cited in 1 paper

On asymptotic behaviour of the remainder term in the central limit theorem

L. V. Rozovskiĭ

Leningrad

Abstract: Let $X_1,X_2,\dots$ be a sequence of independent identically distributed random variables with zero means and unit variances. Let $k_n$ be a sequence of natural numbers, $k_n\to\infty$, $k_{n+1}/k_n\to 1$ ($n\to\infty$),
$$ F_n(x)=\mathbf P\biggl\{\frac{1}{\sqrt{k_n}}\sum_{k=1}^{k_n}X_k<x\biggr\},\qquad \Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-t^2/2}\,dt. $$
We study conditions under which
$$ F_n(x)=\Phi(x)+\frac{\Psi(x)+o(1)}{\mu_n}\qquad (n\to\infty) $$
uniformly in $x$, $-\infty<x<\infty$, where $\mu_n$ is a positive sequence such that $\mu_n\to\infty$, $\mu_n=o(k_n)$ ($n\to\infty$).

Received: 21.01.1976


 English version:
Theory of Probability and its Applications, 1978, 23:1, 106–116

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025