RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1978 Volume 23, Issue 1, Pages 143–148 (Mi tvp2983)

This article is cited in 3 papers

Short Communications

On optimal stopping of Wiener process with incomplete data

H. Fährmann

GDR

Abstract: We consider the optimal stopping problem for a Wiener process $W$ with reward $g(t,x)=x/(1+t)$ under the assumption that only the process
$$ \xi_t^{\varepsilon}=\int_0^t W_s\,ds+\varepsilon\widetilde W_t $$
is observed, where $\varepsilon>0$ and $\widetilde W$ is a Wiener process independent of $W$.
The convergence rate of the optimal mean reward $s^{\varepsilon}$ in this «$\varepsilon$-problem» to the optimal mean reward $s^0$ in the «0-problem» when $\varepsilon\to 0$ turns out to be of order $\sqrt{\varepsilon}$. It is shown that the observation domain is limited by a function for which an equation is derived.

Received: 05.03.1976


 English version:
Theory of Probability and its Applications, 1978, 23:1, 138–143

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025