Abstract:
An infinite non-zero-sum two-person game with payoff function
$$
L_{\delta}(x,y)=
\begin{cases}
1, &\rho(x,y)\le\delta,\\
0, &\rho(x,y)>\delta,
\end{cases}
\qquad(x\in X,y\in Y)
$$
(where $X$, $Y$ are $3$-dimensional unit balls) is considered. A solution of this game for $0,475<\delta<1$ is given.