RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1978 Volume 23, Issue 1, Pages 204–209 (Mi tvp3028)

This article is cited in 1 paper

Short Communications

A sequential test for two simple hypotheses about the mean of a Wiener process with delayed observations

T. P. Mirošničenko

Moscow

Abstract: The estimation problem of an unknown random parameter $\theta=\theta(\omega)$ is studied in the case when $\theta$ takes values 1 and 0 with probabilities $\pi_0$, $1-\pi_0$, respectively, and the observed process is
$$ \xi_t(\omega)=r\theta(\omega)t+\sigma W_t(\omega),\qquad\sigma>0,\qquad r\ne 0,\qquad t\ge 0, $$
where $W$ is a standard Wiener process.
Denote by $\tau=\tau(\omega)$ a Markov time with respect to the family of $\sigma$-algebras $\mathscr F_{\tau}^{\xi}=\sigma\{\xi_s,\,s\le t\}$, and by $d=d(\omega)$ a decision function which is $\mathscr F_{\tau+m}^{\xi}$-measurable, where $m\ge 0$ is the delay time.
We find a pair $(\tau,d)$ which minimizes
$$ \mathbf M[c\tau+a\chi_{(d=0,\theta=1)}+b\chi_{(d=1,\theta=0)}], $$
where $a$, $b$, $c$ are positive constants, $\chi_A$ is the characterictic function of a set $A$ .

Received: 28.04.1976


 English version:
Theory of Probability and its Applications, 1978, 23:1, 195–201

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025