RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1978 Volume 23, Issue 3, Pages 540–547 (Mi tvp3074)

This article is cited in 4 papers

A local limit theorem for the distribution of fractional parts of an exponential function

D. A. Moskvin, A. G. Postnikov

Moscow

Abstract: Let $\Delta=[\alpha,\beta]\subset[0,1]$, $|\Delta|=\beta-\alpha$. Let $\chi(t)$ be the indicator function of $\Delta$. The number of fractional parts of $\{\xi2^x\}$, $x=0,1,\dots,n-1$, belonging to the segment $\Delta$ is
$$ N_n(\xi,\Delta)=\sum_{x=0}^n \chi(\{\xi2^x\}). $$
Let $\tau$ be a non-negative integer number. The following result is proved:
Theorem. For $n\to\infty$, uniformly in $\tau$,
$$ \operatorname{mes}\{\xi:0\le\xi\le 1,\,N_n(\xi,\Delta)=\tau\}= \frac{1}{\sigma\sqrt{2\pi n}}\exp \biggl(-\frac{(\tau-n|\Delta|)^2}{2n\sigma^2}\biggr)+O\biggl(\frac{\sqrt{\ln n}}{n}\biggr). $$


Received: 26.07.1976


 English version:
Theory of Probability and its Applications, 1979, 23:3, 521–528

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024