RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1996 Volume 41, Issue 3, Pages 481–504 (Mi tvp3127)

This article is cited in 1 paper

Normal approximation of $U$-statistics in Hilbert space

Yu. V. Borovskikha, M. L. Purib, V. V. Sazonovc

a Petersburg State Transport University
b Indiana University, Department of Mathematics, USA
c Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: Let $\{U_n\}$, $n=1,2\ldots$ be Hilbert space $H$-valued $U$-statistics with kernel $\Phi(\cdotp,\cdot)$, corresponding to a sequence of observations (random variables) $X_1,X_2,\ldots\ $. The rate of convergence on balls in the central limit theorem for $\{U_n\}$ is investigated. The obtained estimate is of order $n^{-1/2}$ and depends explicitly on $\mathbb E\|\Phi(X_1,X_2)\|^3$ and on the trace and the first nine eigenvalues of the covariance operator of $\mathbb E(\Phi(X_1,X_2)|X_1)$.

Keywords: $U$-statistic, Hilbert space, central limit theorem, normal (Gaussian) approximation, rate of convergence.

Received: 17.05.1994

DOI: 10.4213/tvp3127


 English version:
Theory of Probability and its Applications, 1997, 41:3, 405–424

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025