RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1977 Volume 22, Issue 3, Pages 466–481 (Mi tvp3248)

This article is cited in 3 papers

Inequalities for the distribution of the length of random vector sums

G. Î. H. Katona

Institute of Mathematics, Hungary Academy of Sciences

Abstract: Starting from a combinatorial proof of the inequality
$$ \mathbf P(|\xi+\eta|\ge x)\ge\frac{1}{2}\mathbf P^2(|\xi|\ge x). $$
where $\xi$ and $\eta$ are independent random vectors in a $d$-dimensional Euclidean space, continuous analogues of the combinatorial model are constructed, which enable to deduce inequalities similar to the above.

Received: 14.02.1975


 English version:
Theory of Probability and its Applications, 1978, 22:3, 450–464

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024