RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2000 Volume 45, Issue 1, Pages 125–136 (Mi tvp327)

This article is cited in 60 papers

Stopping Brownian motion without anticipation as close as possible to its ultimate maximum

S. E. Graversena, G. Peskira, A. N. Shiryaevb

a Institute of Mathematics, University of Aarhus, Denmark
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: Let $B=(B_t)_{0 \le t \le 1}$ be the standard Brownian motion started at 0, and let $S_t=\max_{ 0 \le r \le t} B_r$ for $0 \le t \le 1$. Consider the optimal stopping problem
$$ V_*=\inf_\tau{\mathsf E}(B_\tau-S_1)^2, $$
where the infimum is taken over all stopping times of $B$ satisfying $0 \le \tau \le 1$. We show that the infimum is attained at the stopping time $\tau_*=\inf\{0\le t\le 1\mid S_t-B_t\ge z_*\sqrt{1-t}\}$, where $z_*=1.12 \ldots$ is a unique root of the equation $4\Phi(z_*)-2z_*\varphi(z_*)-3=0$ with $\varphi(x)=(1/\sqrt{2 \pi })\,e^{-x^2/2}$ and $ \Phi (x)=\int_{-\infty}^x \varphi(y) dy$. The value $V_*$ equals $2 \Phi (z_*)-1$. The method of proof relies upon a stochastic integral representation of $S_1$, time-change arguments, and the solution of a free-boundary (Stefan) problem.

Keywords: Brownian motion, optimal stopping, anticipation, ultimate maximum, free-boundary (Stefan) problem, Ito–Clark representation theorem, Markov process, diffusion.

Received: 21.10.1999

Language: English

DOI: 10.4213/tvp327


 English version:
Theory of Probability and its Applications, 2001, 45:1, 41–50

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025