RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1975 Volume 20, Issue 3, Pages 623–633 (Mi tvp3308)

This article is cited in 5 papers

Short Communications

On the statistics of branching processes

N. M. Yanev

Sofia, Bulgaria

Abstract: Let $\mu_t(n)$, $t=0,1,2,\dots,$ be a Galton–Watson process, starting from $n$ particles. We show that when $n,t\to\infty$ the estimator
$$ \widehat A_t(n)=\frac{\sum_{k=1}^t\mu_k(n)}{\sum_{k=0}^{t-1}\mu_k(n)} $$
for the expectation $A=\mathbf E\mu_1(1)$ is consistent and asymptoticaly unbiased. We obtain limit distributions for $\widehat A_t(n)$ in the subcritical, critical and supercritical cases.

Received: 17.03.1975


 English version:
Theory of Probability and its Applications, 1976, 20:3, 612–622

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024