RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2000 Volume 45, Issue 1, Pages 175–177 (Mi tvp331)

Short Communications

An inequality for a multidimensional characteristic function

N. G. Gamkrelidzeab

a Gubkin Russian State University of Oil and Gas
b A. Razmadze Mathematical Institute, Georgian Academy of Sciences

Abstract: Let $\xi $ be a vector-valued random variable in $\mathbf{R}^s$ and a corresponding density function $p_\xi(x)$ be “close” to the “standard”normal density. Under this condition an inequality for a characteristic function is proved. The inequality obtained is of interest for the problem of a lower estimator of the rate of convergence in the local limit theorem for densities. An analogous inequality for a lattice distribution was investigated in [N. G. Gamkrelidze, Litovsk. Mat. Sb., 7 (1967), pp. 405–408 (in Russian)] and was given in [V. V. Petrov, Sums of Independent Random Variables, Springer-Verlag, Berlin, New York, 1975] and [Yu. V. Prohorov and Yu. A. Rozanov, Probability Theory: Basic Concepts, Limit Theorems, and Random Processes, Springer-Verlag, Berlin, New York, 1969].

Keywords: vector-valued random variable, density function, standard normal density, characteristic function, local limit theorem.

Received: 16.10.1999

DOI: 10.4213/tvp331


 English version:
Theory of Probability and its Applications, 2001, 45:1, 133–135

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024