RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1964 Volume 9, Issue 1, Pages 31–42 (Mi tvp336)

This article is cited in 10 papers

Mehrdimensionale Grenzwertsätze für grosse Abweichungen und ihre Anwendung auf die Verteilung von $\chi^2$

Wolfgan Richter


Abstract: Going out from multi-dimensional local limit theorems for large deviations (see [3], Theorem 1, as well as Theorem 2 of the present note), two integral limit theorems are proved (Theorems 4 and 5). In the proof a generalization of the method is used, by which A. Ya. Khinchin derived the first integral theorem for large deviations in the case of Bernoulli schemes [7]. Theorem 1 is a consequence of these theorems applied to the distribution of the $\chi^2$ statistics.

Received: 15.09.1962

Language: German


 English version:
Theory of Probability and its Applications, 1964, 9:1, 28–37

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024