RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1995 Volume 40, Issue 2, Pages 286–300 (Mi tvp3477)

This article is cited in 12 papers

On asymptotic optimality of estimators of parameters under the LAQ condition

A. A. Gushchin

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: In this paper we consider the problem of asymptotic optimality of estimators of parameters under the local asymptotic quadratic condition. It is shown that if the deviation of estimators from the true value is normed by a specially chosen random factor, then the so-called asymptotically centered estimators are asymptotically admissible for the quadratic loss function and have the smallest asymptotic variance among estimators with an asymptotically constant bias.

Keywords: local asymptotic quadratic property, local asymptotic normality, local asymptotic mixed normality, asymptotically centered estimators, Cramér–Rao inequality, Ornstein–Uhlenbeck process, autoregressive process, Galton–Watson branching process.

Received: 03.09.1993


 English version:
Theory of Probability and its Applications, 1995, 40:2, 261–272

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025