RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1995 Volume 40, Issue 2, Pages 301–312 (Mi tvp3478)

This article is cited in 9 papers

On distribution of quadratic forms in Gaussian random variables

G. Christopha, Yu. V. Prokhorovb, V. V. Ulyanovc

a Fakultät für Mathematik, Universität Magdeburg, Magdeburg, Germany
b Steklov Mathematical Institute, Russian Academy of Sciences
c M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

Abstract: Two-sided bounds are constructed for a density function $p(u,a)$ of a random variable $|Y-a|^2 $, where $Y$ is a Gaussian random element in a Hilbert space with zero mean. The estimates are sharp in the sense that starting from large enough $u$ the ratio of upper bound to lower bound equals 8 and does not depend on any parameters of a distribution of $|Y-a|^2$. The estimates imply two-sided bounds for probabilities $\mathbf{P}(|Y-a|>r)$

Keywords: Gaussian measure, tail behavior, noncentral $\chi^2$-distribution, distribution of quadratic forms.

Received: 14.04.1995


 English version:
Theory of Probability and its Applications, 1995, 40:2, 250–260

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024