RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1995 Volume 40, Issue 2, Pages 404–412 (Mi tvp3485)

This article is cited in 8 papers

Short Communications

Comparison theorems for distribution functions of quadratic forms of Gaussian vectors

N. K. Bakirov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences

Abstract: Let $Q_1$ and $Q_2$ be nonnegatively definite quadratic forms of centered Gaussian random variables (r.v.'s) satisfying normalization condition $\mathbf{E}Q_1={\mathbf E}Q_2=1$. If the vector of eigenvalues of $Q_1$ majorizes that of $Q_2$, then the distribution function of $Q_1$ is less than the distribution function of $Q_2$ when their arguments exceed 2. Some statistical applications are given.

Keywords: comparison theorem, quadratic form of r.v.'s, quadratic statistics.

Received: 07.04.1992


 English version:
Theory of Probability and its Applications, 1995, 40:2, 340–348

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025