RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1964 Volume 9, Issue 1, Pages 139–146 (Mi tvp352)

This article is cited in 5 papers

Short Communications

Sur le comportement de la mesure invariante du procès de diffusion avec petit diffusion

M. B. Nevel'son

Moscou

Abstract: In this note we examine the behavior of the invariant measure $\mu_\varepsilon(v)=\int_v p_\varepsilon(x)\,dx$ of a Markov process, when the diffusion coefficient is a small parameter.In the case when the bounded dynamical system has an invariant measure with density $p_0(x)$ we have shown that $\lim_{\varepsilon\to 0}p_\varepsilon(x)=p_0(x)$. We have investigated the case when the bounded dynamical system has a stable position. Theorem 3 allows one to find the points in which the whole measure $\mu_\varepsilon(v)$ is concentrated as $\varepsilon\to 0$.

Received: 27.11.1963


 English version:
Theory of Probability and its Applications, 1964, 9:1, 125–131

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025