RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1977 Volume 22, Issue 4, Pages 845–851 (Mi tvp3633)

This article is cited in 1 paper

Short Communications

Asymptotic properties of the extinction probability for a Markov multiplication process

G. Š. Lev

Barnaul

Abstract: For sequences $\{\tau_i\}$, $\{\gamma_i\}$ of independent positive random variables the following process is constructed: $Y(0)=x$, $dY/dt=-1$ everywhere except points $t_n=\tau_1+\dots+\tau_n$ where $Y(t_n)=\gamma_n Y(t_n-0)=Y(t_n+0)$. Limit theorems are proved concerning the behaviour of the extinction probability
$$ f(x)=\mathbf P(\inf\{Y(t),t\ge 0\}<0),\qquad x\to\infty. $$


Received: 14.02.1976


 English version:
Theory of Probability and its Applications, 1978, 22:4, 825–831

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025