RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1995 Volume 40, Issue 4, Pages 934–938 (Mi tvp3760)

Short Communications

Optimal unbiased estimators in additive models with bounded errors are deterministic

L. Mattnera, M. Reindersb

a Institut für Mathematische Stochastic, Universität Hamburg, Hambourg, Germany
b Universität Hannover, Institut für Mathematik, Hannover, Germany

Abstract: In an additive model $X=\vartheta+\varepsilon$, $\vartheta\in\Theta\subset{\mathbf R}^k$, let the errors $\varepsilon$ have a compactly supported but otherwise arbitrary known joint distribution. Let $g$ be a uniformly minimum variance unbiased estimator for its own expectation $\gamma(\vartheta)$. We show that under mild regularity conditions, $g$ is deterministic: for every $\vartheta\in\Theta$, $g(X)=\gamma(\vartheta)$ almost surely. Our proof uses a lemma on entire quotients of Fourier transforms which might be of independent interest.

Keywords: characteristic function, entire function, exponential type, Fourier transform, linear model, location parameter, shift model, uniformly minimum variance unbiased estimator.

Received: 16.02.1993

Language: English


 English version:
Theory of Probability and its Applications, 1995, 40:4, 772–777

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024