RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1994 Volume 39, Issue 1, Pages 201–211 (Mi tvp3767)

This article is cited in 24 papers

Short Communications

Integral option

D. O. Kramkova, É. Mordeckib

a Steklov Mathematical Institute, Russian Academy of Sciences
b Facultad de Ingenieria, Montevideo, Uruguay

Abstract: In the context of diffusion model of the $(B,S)$-market consisting of two assets: riskless bank account $B=(B_t)_{t\ge 0}$ and risky stock $S=(S_t)_{t\ge 0}$ described by (1.1) and (1.2) we consider the option of American type with payment function of “integral type” $f=(f_t)_{t\ge 0}$:
$$ f_t=e^{-\lambda t}\left[\int_0^t S^u\,du+s\psi_0\right]. $$
The paper solves the problem of definition of the fair price of the integral option under consideration. The structure of the expiration time is also described.

Keywords: Black and Scholes model of $(B,S)$-market American option, integral option, Asian option, optimal stopping time, Kummer's functions, rational time.

Received: 05.07.1993


 English version:
Theory of Probability and its Applications, 1994, 39:1, 162–172

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024