RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1994 Volume 39, Issue 3, Pages 627–635 (Mi tvp3838)

Short Communications

On amarts with continuous time

I. A. Dzhvarsheishvili

Georgian Technical University

Abstract: We introduce a notion of a $D_v$-amart into consideration, which generalizes a notion of a martingale. For stochastic processes $(X_t(\omega))_{t\ge 0}$, which are $D_v$-amarts, we obtain sample properties of their trajectories such as the existence of
$$ \lim_{t\uparrow\tau(\omega)}X_t(\omega), \qquad \lim_{t\downarrow\tau(\omega)}X_t(\omega), $$
where $\tau=\tau(\omega)$ are some or other stopping times, and the existence of modifications with right-continuous trajectories.

Keywords: martingales, amarts, $D_v$-amarts, modifications, stopping times.

Received: 13.02.1990


 English version:
Theory of Probability and its Applications, 1994, 39:3, 512–519

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024