RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2001 Volume 46, Issue 2, Pages 233–246 (Mi tvp3916)

This article is cited in 1 paper

On Some Estimation Problems with Information Constraints

M. V. Burnasheva, T. S. Hanb, Shun-ichi Amaric

a A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
b University of Electro-Communications, Graduate School of Information Systems
c RIKEN Brain Science Institute

Abstract: This paper is the second part of [M. V. Burnashev, Sh. Amari, and T. S. Han, Theory Probab. Appl., 45 (2000), pp. 558–568]. A parameter estimation problem is considered where some part of the data cannot be directly observed. Our helper observes those data and can send us some limited amount of information about them. What kind of information allows us to get a minimal mean-square error in a parameter estimate? In particular, what is the minimal information required to get the same mean-square error as when we directly observe all the data? Some upper bounds for that minimal amount of information and some related results are obtained.

Keywords: parameter estimate, mean-square error, Fisher information, rate of transmission, critical rate.

Received: 22.10.1998

DOI: 10.4213/tvp3916


 English version:
Theory of Probability and its Applications, 2002, 46:2, 214–225

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024