RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2001 Volume 46, Issue 2, Pages 387–397 (Mi tvp3929)

This article is cited in 62 papers

Short Communications

Large-Deviation Probabilities for Maxima of Sums of Independent Random Variables with Negative Mean and Subexponential Distribution

D. A. Korshunov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We consider the sums $S_n=\xi_1+\dots+\xi_n$ of independent identically distributed random variables with negative mean value. In the case of subexponential distribution of the summands, the asymptotic behavior is found for the probability of the event that the maximum of sums $\max(S_1,\ldots,S_n)$ exceeds high level $x$. The asymptotics obtained describe this tail probability uniformly with respect to all values of $n$.

Keywords: maxima of sums of random variables, homogeneous Markov chain, large deviation probabilities, subexponential distribution, integrated tail distribution.

Received: 19.10.1998

DOI: 10.4213/tvp3929


 English version:
Theory of Probability and its Applications, 2002, 46:2, 355–366

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024