RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1993 Volume 38, Issue 2, Pages 460–470 (Mi tvp3958)

This article is cited in 5 papers

Short Communications

On large deviations in the Poisson approximation

V. A. Statulyavichus, A. K. Aleshkyavichenea

a Institute of Mathematics and Informatics

Abstract: This paper proves a general lemma comparing the behavior of probabilities of large deviations $\mathbf{P}(X\ge x)$ of a random variable $X$ against the Poisson distribution $1-P(x,\lambda)$ ($\lambda$ is the parameter of the Poisson distribution). When upper bounds are known for the factorial cumulants $\widetilde\Gamma_k (x)$ of $k$th order:
$$ |\widetilde\Gamma _k (X)|\le\frac{k!\lambda}{\Delta^{k-1}}\quad\text{for }\forall k\ge2 $$
for some $\Delta>0$, then large deviations may be compared in the interval $1\le x-\lambda<\delta\lambda\Delta$, $0<\delta<1$. For such $x$
$$ \frac{\mathbf{P}(X\ge x)}{1-P(x,\lambda)}=e^{L(x)}\biggl(1+\theta_1\frac{1+\lambda}{x}+\theta_2\frac{(x-\lambda)^{3/2}}{\Delta}\biggr), $$
where $L(x)$ is a power series and $|\theta_i|<C(\delta)$, $i=1,2$.

Keywords: large deviations, Poisson approximation, factorial moments and cumulants, mixed cumulants, higher correlation functions.

Received: 26.01.1993


 English version:
Theory of Probability and its Applications, 1993, 38:2, 385–393

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024