This article is cited in
7 papers
On sequentional estimation of the location parameter for families of distributions with discontinuous densities
I. A. Ibragimova,
R. Z. Khas'minskiib a Moscow
b Leningrad
Abstract:
We consider sequential estimation of the location parameter
$\theta$ from independent observations
$X_1,X_2,\dots$ with a common probability density function
$f(x-\theta)$;
$x,\theta\in R^1$.
Under the conditions:
(i) the only discontinuities of
$f(x)$ are jumps at points
$x_1,\dots,x_r$,
(ii) $\displaystyle{\int_{-\infty}^\infty|f'(x)|\,dx<\infty}$,
(iii) $\displaystyle{\biggl(\sum_if^2(x_i+0)\biggr)\biggl(\sum_if^2(x_i-0)\biggr)>0}$,
we construct two invariant sequential procedures
$[d,\tau]$,
$\mathbf E_\theta\tau\le n$, such that
$$
\varlimsup_n\mathbf E_\theta|d_\tau-\theta|^a/\mathbf E_\theta|\widetilde t_n-\theta|^a<1,\quad a>1,
$$
and
$\widetilde t_n$ is the best invariant estimator of
$\theta$ corresponding to the loss function
$|u-\theta|^a$.
Received: 04.05.1973