RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1993 Volume 38, Issue 3, Pages 675–679 (Mi tvp4007)

This article is cited in 73 papers

Short Communications

On multivariate skewness and kurtosis

T. F. Mória, V. K. Rohatgib, G. J. Szekelyb

a Eötvös University, Budapest, Hungary
b Bowling Green State University, Bowling Green, USA

Abstract: Let $X$ be a $d$-dimensional standardized random variable $(\mathbf{E}(X)=0,\operatorname{cov}(X)=1)$. Then for a multivariate analogue of skewness $s=\mathbf{E}(\|X\|^2X)$ and kurtosis $k=\mathbf{E}XX^TXX^T-(d+2)I$ we show that $\|s\|^2\le\operatorname{tr}k+2d$. For infinitly divisible distributions $\|s\|^2\le\operatorname{tr}k$.

Keywords: multivariate skewness, kurtosis, infinitely divisible distributions.

Received: 14.03.1991

Language: English


 English version:
Theory of Probability and its Applications, 1993, 38:3, 547–551

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025