Abstract:
Let $V$ be a cube of dimension $\nu$, with volume $|V|$. Let ${{|V|}/{N \to\nu}}$, $N\to\infty$. Let ${\mathbf x}=(x_1,\cdots ,x_N)$, $x_i\in V$, $i=1,\cdots ,N$,
$$
Q(V,N)=\int_V\dotsi\int_V\exp\{-\beta U({\mathbf x})\}\,dx_1\dots dx_N,
$$
where
$$
U({\mathbf x})=\sum_{1\leqq i<j\leqq N}\Phi(|x_i-x_j|).
$$
The conditions on $\Phi(y)$, which are sufficient and in some sense necessary for the existence of the finite limit
$$
\lim_{N\to\infty}\frac1N\log\frac1{{N!}}Q(V,N)
$$
are given.