RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1964 Volume 9, Issue 4, Pages 626–643 (Mi tvp414)

This article is cited in 38 papers

Investigation of the Conditions of the Asymptotic Existence of the Configuration Integral of the Gibbs Distribution

R. L. Dobrušin

Moscow

Abstract: Let $V$ be a cube of dimension $\nu$, with volume $|V|$. Let ${{|V|}/{N \to\nu}}$, $N\to\infty$. Let ${\mathbf x}=(x_1,\cdots ,x_N)$, $x_i\in V$, $i=1,\cdots ,N$,
$$ Q(V,N)=\int_V\dotsi\int_V\exp\{-\beta U({\mathbf x})\}\,dx_1\dots dx_N, $$
where
$$ U({\mathbf x})=\sum_{1\leqq i<j\leqq N}\Phi(|x_i-x_j|). $$
The conditions on $\Phi(y)$, which are sufficient and in some sense necessary for the existence of the finite limit
$$ \lim_{N\to\infty}\frac1N\log\frac1{{N!}}Q(V,N) $$
are given.

Received: 20.05.1964


 English version:
Theory of Probability and its Applications, 1964, 9:4, 566–581

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024