This article is cited in
61 papers
Control of a Solution of a Stochastic Integral Equation
N. V. Krylov Moscow
Abstract:
Let
$\xi(t)$ be a Wiener process in
$E_n$,
$\alpha_n$ a non-anticipative vector function,
$\delta=\{\alpha_t\}$,
$x_t^{\delta,x}$ a solution of
$$
x_t=x+\int_0^t\sigma(x_s,\alpha_s)d\xi_s+\int_0^t b(x_s,\alpha_s)\,ds,
$$
$\varphi=\varphi(x)$. In this paper, smouthness of functions
$$
v(x)=\sup_{\delta,\tau}\mathbf{M}\biggl[\int_0^\tau e^{-\lambda t}f(x_t^{\delta,x},\alpha_t)\,dt+e^{-\lambda\tau}\varphi(x_\tau^\delta,x)\biggr]
$$
is investigated.
Under conditions of smouthness type on
$\sigma,b,f,\varphi$ it is proved that
$v\in W_{p,\textrm{loc}}^2$ (Sobolev space). If, in addition,
$\sigma\sigma^*$ is strictly positive-definite, then
$$
\sup_\alpha (L^\alpha v+f^\alpha)\leq 0\ (\textrm{a.e.}), \quad \sup_\alpha (L^\alpha v+f^\alpha)=0\ (\textrm{a.e.}\ \{x: v(x)>\varphi(x)\}).
$$
The structure of
$\varepsilon$-optimal policies
$\delta$ and
$\varepsilon$-optimal stopping times
$\tau$ is also studied.
Received: 28.04.1970