RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1972 Volume 17, Issue 1, Pages 153–160 (Mi tvp4213)

This article is cited in 1 paper

Short Communications

On Lévy–Baxter Theorems for Random Fields

T. V. Arak

Leningrad

Abstract: Let $\xi(t)=\xi(t_1,\dots,t_k)$ be a Gaussian random field. In this paper, some sufficient conditions for convergence of the sums
$$ \sum_{\alpha_1,\dots,\alpha_k=1}^{2^n}F_n(\Delta_{2^{-n}}\xi(2^{-n}\alpha)), \quad \alpha=(\alpha_1,\dots,\alpha_k), $$
to a constant are obtained, where $\Delta_{2^{-n}}\xi(t)$ is the $k$th increment of the sample function $\xi(t)$ defined by (1) and $F_n$ are Borel functions. The results are analogues to those contained in [1]–[6] and can be considered as some generalizations of the theorem due to Berman in [5].

Received: 03.04.1970


 English version:
Theory of Probability and its Applications, 1972, 17:1, 153–159

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024