RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1973 Volume 18, Issue 2, Pages 396–402 (Mi tvp4305)

This article is cited in 7 papers

Short Communications

On a Multidimensional Version of the Kolmogorov Uniform Limit Theorem

E. L. Presman

Moscow

Abstract: It is proved, that, for any $k$, there exist such a constant $c(k)$, that for any distribution function $F=F(x)$ in $R^k$, one can find a sequence of the vectors $\{a_n\}$ for which
$$ \rho (F^n, E_{-na_{n}}\exp n (E_{a_n}F - E))<c(k)n^{-1/3} $$
where $\rho (F,g)=\sup_x |F(x)-G(x)|$, $F^n$ is the $n$-time convolution of $F$ with itself and $E_a$ is the distribution function corresponding to the unit mass at $a$.

Received: 18.05.1971


 English version:
Theory of Probability and its Applications, 1973, 18:2, 378–384

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024