Abstract:
Let $S_n=\sum_{k=1}^n X_k$, $\overline{S}_n=\max_{1\ge k\le n} S_k$; $B_n^2=\sum_{k=1}^n \mathbf{D}X_k$,
$$
G(x)=\begin{cases}
\sqrt{\frac{2}{\pi}}\int_0^x e^{-t^2/2}dt &(x\ge 0)\\
0 &(x<0)
\end{cases}, \quad
L_{n,p}=\frac{\sum_{k=1}^n \mathbf{E}|X_k|^p}{B_n^p} \quad (p>2).
$$
A sequence of independent symmetric random variables $\{X_n\}$ is constructed for which the estimste
$$
\sup_x|\mathbf{P}\{\overline{S}_n<xB_n\}-G(x)|=o(L_{n,p}^{1/p})
$$
ails to hold.