RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1973 Volume 18, Issue 2, Pages 402–405 (Mi tvp4306)

This article is cited in 3 papers

Short Communications

Some Estimates for the Maximum Cumulative Sum of Independent Random Variables

T. V. Arak, V. B. Nevzorov

Leningrad State University

Abstract: Let $S_n=\sum_{k=1}^n X_k$, $\overline{S}_n=\max_{1\ge k\le n} S_k$; $B_n^2=\sum_{k=1}^n \mathbf{D}X_k$,
$$ G(x)=\begin{cases} \sqrt{\frac{2}{\pi}}\int_0^x e^{-t^2/2}dt &(x\ge 0)\\ 0 &(x<0) \end{cases}, \quad L_{n,p}=\frac{\sum_{k=1}^n \mathbf{E}|X_k|^p}{B_n^p} \quad (p>2). $$
A sequence of independent symmetric random variables $\{X_n\}$ is constructed for which the estimste
$$ \sup_x|\mathbf{P}\{\overline{S}_n<xB_n\}-G(x)|=o(L_{n,p}^{1/p}) $$
ails to hold.

Received: 15.06.1971


 English version:
Theory of Probability and its Applications, 1973, 18:2, 384–387

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024