RUS
ENG
Full version
JOURNALS
// Teoriya Veroyatnostei i ee Primeneniya
// Archive
Teor. Veroyatnost. i Primenen.,
2013
Volume 58,
Issue 2,
Pages
255–281
(Mi tvp4506)
This article is cited in
4
papers
On a probabilistic method of solving a one-dimensional initial-boundary value problem
I. A. Ibragimov
a
,
N. V. Smorodina
b
,
M. M. Faddeev
b
a
St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b
St. Petersburg State University, Department of Mathematics and Mechanics
Abstract:
We obtain an analogue of probabilistic representation of a solution of an initial-boundary value problem for the equation $\partial u/\partial t+(\sigma^2/2)\partial^2u/\partial x^2+f(x)u=0$, where
$\sigma$
is a complex number.
Keywords:
random processes; evolution equation; limit theorems; Feynman–Kac formula; Feynman integral; Feynman measure.
MSC:
60
Received:
01.11.2012
DOI:
10.4213/tvp4506
Fulltext:
PDF file (272 kB)
References
Cited by
English version:
Theory of Probability and its Applications, 2014,
58
:2,
242–263
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2024