RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2013 Volume 58, Issue 2, Pages 255–281 (Mi tvp4506)

This article is cited in 4 papers

On a probabilistic method of solving a one-dimensional initial-boundary value problem

I. A. Ibragimova, N. V. Smorodinab, M. M. Faddeevb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b St. Petersburg State University, Department of Mathematics and Mechanics

Abstract: We obtain an analogue of probabilistic representation of a solution of an initial-boundary value problem for the equation $\partial u/\partial t+(\sigma^2/2)\partial^2u/\partial x^2+f(x)u=0$, where $\sigma$ is a complex number.

Keywords: random processes; evolution equation; limit theorems; Feynman–Kac formula; Feynman integral; Feynman measure.

MSC: 60

Received: 01.11.2012

DOI: 10.4213/tvp4506


 English version:
Theory of Probability and its Applications, 2014, 58:2, 242–263

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024