RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2000 Volume 45, Issue 2, Pages 209–235 (Mi tvp460)

This article is cited in 8 papers

Estimation problems for coefficients of stochastic partial differential equations. Part III

I. A. Ibragimova, R. Z. Khas'minskiib

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Wayne State University, Detroit, USA

Abstract: This paper is concerned with the problem of estimating a functional parameter $a_0(t,x)$ upon observation of a solution $u_\varepsilon(t,x)$ of the stochastic partial differential equation
$$ du_\varepsilon(t)=\sum_{|k|\le 2p}a_kD_x^ku_\varepsilon\,dt+f\,dt+\varepsilon\,dw(t)=0. $$
Asymptotically minimax estimates for $a_0$ and asymptotically effective estimates for $\Phi(a_0)$ are found under the assumption that $a_0$ is independent of $t$.

Keywords: inverse problems, stochastic partial differential equations, statistical estimation, nonparametric problems of estimating.

Received: 09.12.1997

DOI: 10.4213/tvp460


 English version:
Theory of Probability and its Applications, 2001, 45:2, 210–232

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025