RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1962 Volume 7, Issue 1, Pages 82–83 (Mi tvp4700)

This article is cited in 2 papers

Short Communications

Martingales on Metric Spaces

V. E. Beneš

Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey

Abstract: Let $\{x_n,n=1,2,\dots\}$ be a random sequence with values in a compact metric space $X$. Following Doss, we define the conditional mathematical expectation of $x_n$ with respect to the Borel field $\mathfrak{F}$ as the (random) set
$$M\left\{{x_n|\mathfrak{F}}\right\}=\mathop\cup\limits_{y\in D}\left\{{z:d\left({z,y}\right)\leq{\mathbf E}\left({d\left({x_n,y}\right)|\mathfrak{F}}\right)}\right\},$$
where $d(\cdot,\cdot)$ is the metric and $D$ is a countable dense subset of $X$. Let $\mathfrak{F}_n$ be an increasing sequence of Borel fields, such that $x_n$ is $\mathfrak{F}_n$-measurable. The process $x_n$ is called a (generalized) martingale if $x_n\in M\{x_{n+1}| \mathfrak{F}_n\}$ with probability one.

Received: 27.03.1961

Language: English


 English version:
Theory of Probability and its Applications, 1962, 7:1, 81–82


© Steklov Math. Inst. of RAS, 2024