This article is cited in
511 papers
Some Limit Theorems for Stationary Processes
I. A. Ibragimov Leningrad
Abstract:
In this paper stationary stochastic processes in the strong sense
$\{x_j\}$ are investigated, which satisfy the condition
$$
|\mathbf P(AB)-\mathbf P(A)\mathbf P(B)|\leq\varphi(n)\mathbf P(A),\quad\varphi(n)\downarrow 0,
$$
for every $A\in\mathfrak{M}_{-\infty}^0,B\in\mathfrak{M}_n^\infty$, or the “strong mixing condition”
$$
\sup_{A\in\mathfrak{M}_{-\infty}^0,B\in\mathfrak{M}_n^\infty}|\mathbf P(AB)-\mathbf P(A)\mathbf P(B)|\alpha(n)\downarrow0,
$$
where
$\mathfrak{M}_a^b$ is a
$\sigma$-algebra generated by the events
$$
\{(x_{i_1},x_{i_2},\dots,x_{i_k})\in\mathbf E\},\qquad a \leq i_1<i_2<\dots<i_k\leq b,
$$
$\mathbf E$ being a
$k$-dimensional Borel set.
Some limit theorems for the sums of the type
$$\frac{x_1+\cdots+x_n}{B_n}-A_n\quad{\text{or}}\quad\frac{f_1+ \cdots+f_n}{B_n }-A_n$$
are established. Here
$f_j=T^j f$, and the random variable
$f$ is measurable with respect to
$\mathfrak{M}_{-\infty}^\infty $.
Received: 15.01.1961