RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2000 Volume 45, Issue 3, Pages 555–567 (Mi tvp485)

This article is cited in 8 papers

Exact maximal inequalities for exchangeable systems of random variables

S. Chobanyana, H. Salehib

a Muskhelishvili Institute of Computational Mathematics
b Michigan State University, MI, USA

Abstract: Given an exchangeable finite system of Banachspace valued random variables $(\xi_1,\ldots,\xi_n)$ with $\sum_1^n\xi_i=0$, we prove that $\mathbf{E}\Phi(\max_{k\le n}\|\xi_1+\cdots+\xi_k\|)$ is equivalent to $\mathbf{E}\Phi(\|\sum_1^n\xi_ir_i\|)$ for any increasing and convex $\Phi\colon\mathbf{R}^+\to\mathbf{R}^+$, $\Phi(0)=0$, where $(r_1,\ldots,r_n)$ is a system of Rademacher random variables independent of $(\xi_1,\ldots,\xi_n)$. We also establish the equivalence of the tails of the related distributions. The results seem to be new also for scalar random variables. As corollaries we find best estimations for the average of $\max_{k\le n}\|a_{\pi(1)}+\cdots+a_{\pi(k)}\|$ with respect to permutations $\pi$ of nonrandom vectors $a_1,\ldots,a_n$ from a normed space.

Keywords: exchangeable random variables, Banach space, maximal inequality, permutations.

Received: 31.03.1998

Language: English

DOI: 10.4213/tvp485


 English version:
Theory of Probability and its Applications, 2001, 45:3, 424–435

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025