RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2018 Volume 63, Issue 1, Pages 3–28 (Mi tvp5118)

This article is cited in 7 papers

High extremes of Gaussian chaos processes: a discrete time approximation approach

A. I. Zhdanov, V. I. Piterbarg

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Let $\mathbf{\boldsymbol{\xi}}(t)=(\xi_{1}(t),\ldots,\xi_{d}(t))$ be a Gaussian zero mean stationary a.s. continuous vector process. Let $g\colon{\mathbb{R}}^{d}\to {\mathbb{R}}$ be a homogeneous function of positive degree. We study probabilities of high extrema of the Gaussian chaos process $g(\mathbf{\boldsymbol{\xi}}(t))$. Important examples are products of Gaussian processes, $\prod_{i=1}^{d}\xi_{i}(t)$, and quadratic forms $\sum_{i,j=1}^{d}a_{ij}\xi_{i}(t)\xi_{j}(t)$. Methods of our studies include the Laplace saddle point asymptotic approximation and the double sum asymptotic method for probabilities of high excursions of Gaussian processes. For the first time, using the double sum method, we apply the discrete time approximation with refining grid.

Keywords: Gaussian processes, Gaussian chaos, high extreme probabilities, Laplace saddle point approximation method, double sum method.

Received: 11.01.2017
Revised: 01.08.2017

DOI: 10.4213/tvp5118


 English version:
Theory of Probability and its Applications, 2018, 63:1, 1–21

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024