RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2019 Volume 64, Issue 1, Pages 98–125 (Mi tvp5204)

This article is cited in 2 papers

Pathwise decompositions of Brownian semistationary processes

O. Sauri

Department of Mathematical Sciences, Aalborg University, Denmark

Abstract: We find a pathwise decomposition of a certain class of Brownian semistationary processes ($\mathcal{BSS}$) in terms of fractional Brownian motions. To do this, we specialize in the case when the kernel of the $\mathcal{BSS}$ is given by $\varphi_{\alpha}(x)=L(x)x^{\alpha}$ with $\alpha\in(-1/2,0)\cup(0,1/2)$ and $L$ a continuous function slowly varying at zero. We use this decomposition to study some path properties and derive Itô's formula for this subclass of $\mathcal{BSS}$ processes.

Keywords: Brownian semistationary processes, fractional Brownian motion, stationary processes, Volterra processes, Itô's formula.

Received: 25.06.2017
Revised: 10.10.2018
Accepted: 18.10.2018

DOI: 10.4213/tvp5204


 English version:
Theory of Probability and its Applications, 2019, 64:1, 78–102

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024