RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2018 Volume 63, Issue 4, Pages 795–807 (Mi tvp5235)

This article is cited in 3 papers

Short Communications

Reduced critical branching processes for small populations

M. Liua, V. A. Vatutinbc

a School of Mathematical Sciences & Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing, China
b Beijing Normal University, Beijing, China
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: Let $\left\{ Z(n),n\geq 0\right\} $ be a critical Galton–Watson branching process with finite variance for the offspring number of particles. Assuming that $0<Z(n)\leq \varphi (n)$, where either $\varphi (n)=an$ for some $a>0$ or $\varphi (n)=o(n)$ as $n\rightarrow \infty $, we study the structure of the process $ \left\{ Z(m,n),0\leq m\leq n\right\} $, where $Z(m,n)$ is the number of particles in the initial process at moment $m\leq n$ having a positive number of descendants at moment $n$.

Keywords: critical branching process, reduced processes, conditional limit theorems.

Received: 18.06.2018
Revised: 25.06.2018
Accepted: 26.06.2018

DOI: 10.4213/tvp5235


 English version:
Theory of Probability and its Applications, 2019, 63:4, 648–656

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025