RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2021 Volume 66, Issue 1, Pages 175–195 (Mi tvp5298)

The first passage time density of Brownian motion and the heat equation with Dirichlet boundary condition in time dependent domains

J. M. Lee

Seoul, Republic of Korea

Abstract: In [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837–849] it is proved that we can have a continuous first-passage-time density function of one-dimensional standard Brownian motion when the boundary is Hölder continuous with exponent greater than $1/2$. For the purpose of extending the results of [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837–849] to multidimensional domains, we show that there exists a continuous first-passage-time density function of standard $d$-dimensional Brownian motion in moving boundaries in $\mathbb{R}^{d}$, $d\geq 2$, under a $C^{3}$-diffeomorphism. Similarly as in [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837–849], by using a property of local time of standard $d$-dimensional Brownian motion and the heat equation with Dirichlet boundary condition, we find a sufficient condition for the existence of the continuous density function.

Keywords: first passage time, Brownian motion, heat equation, Dirichlet boundary condition.

Received: 10.03.2019
Revised: 28.07.2020
Accepted: 12.12.2019

DOI: 10.4213/tvp5298


 English version:
Theory of Probability and its Applications, 2021, 66:1, 142–159

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025