RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2021 Volume 66, Issue 3, Pages 552–564 (Mi tvp5313)

A maximal theorem of Hardy–Littlewood type for pairwise i.i.d. random variables and the law of large numbers

T. Nguyen, H. Pham

School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand

Abstract: Let $p\in [1,2)$. We show that if $(X_n)_{n=1}^\infty$ is a sequence of pairwise i.i.d. random variables with $\mathbf{E}|X_1|^p<\infty$, then $\mathbf{P}\{\sup_n|{S_n}/{n^{1/p}}|> \alpha\}\le {C_p\,\mathbf{E}|X_1|^p}/{\alpha^p}$ for every $\alpha>0$ for some constant $C_p$ depending only on $p$, where $S_n:=\sum_{i=1}^n(X_i-\mathbf{E}X_i)$. This will be proved as a consequence of a more general result where, instead of being pairwise i.i.d., the sequence $(X_n)$ is only required to be weakly correlated in the sense of E. Rio. In fact, we prove an inequality that gives the rates of the convergence $\lim_{n\to\infty}|S_n|/{n^{{1}/{p}}}=0$ a.s. and thus strengthen the main result of [E. Rio, C. R. Acad.Sci. Paris Sér. I Math., 320 (1995), pp. 469–474].

Keywords: pairwise i.i.d., the law of large numbers, Hardy–Littlewood maximal theorem.

Received: 09.04.2019
Revised: 28.01.2021

DOI: 10.4213/tvp5313


 English version:
Theory of Probability and its Applications, 2021, 66:3, 445–454

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024