RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2022 Volume 67, Issue 3, Pages 607–617 (Mi tvp5316)

Short Communications

Exact lower and upper bounds for Gaussian measures

I. Pinelis

Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, USA

Abstract: Exact upper and lower bounds on the ratio $\operatorname{\mathbf{E}}w(\mathbf{X}-\mathbf{v})/\operatorname{\mathbf{E}}w(\mathbf{X})$ for a centered Gaussian random vector $\mathbf{X}$ in $\mathbf{R}^n$ are obtained, as well as bounds on the rate of change of $\operatorname{\mathbf{E}}w(\mathbf{X}-t\mathbf{v})$ in $t$, where $w\colon\mathbf{R}^n\to[0,\infty)$ is any even unimodal function and $\mathbf{v}$ is any vector in $\mathbf{R}^n$. As a corollary of such results, exact upper and lower bounds on the power function of statistical tests for the mean of a multivariate normal distribution are given.

Keywords: Gaussian measures, multivariate normal distribution, shifts, unimodality, logconcavity, monotonicity, exact bounds, tests for the mean.

Received: 18.04.2019

DOI: 10.4213/tvp5316


 English version:
Theory of Probability and its Applications, 2022, 67:3, 485–493

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025