RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2021 Volume 66, Issue 1, Pages 94–109 (Mi tvp5360)

This article is cited in 3 papers

Asymptotics for the distribution of the time of attaining the maximum for a trajectory of a Poisson process with linear drift and intensity switch

V. E. Mosyagin

Tyumen State University

Abstract: We find the exact asymptotics of the distribution of the time when the trajectory of the process $Y(t)=at-\nu_+(pt)+\nu_-(-qt)$, $t\in(-\infty,\infty)$ attains its maximum, where $\nu_{\pm}(t)$ are independent standard Poisson processes extended by zero on the negative semiaxis. The parameters $a$, $p$, $q$ are assumed just to satisfy the condition $\mathbf{E}Y(t)<0$, $t\neq 0$.

Keywords: Poisson process with linear drift, random process with negative mean drift, exact asymptotics of distribution tails.

MSC: 60G51, 60G70

Received: 09.10.2019
Revised: 14.07.2020
Accepted: 22.10.2020

DOI: 10.4213/tvp5360


 English version:
Theory of Probability and its Applications, 2021, 66:2, 75–88

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025