RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2022 Volume 67, Issue 2, Pages 327–350 (Mi tvp5399)

This article is cited in 5 papers

Complete $f$-moment convergence for randomly weighted sums of extended negatively dependent random variables and its statistical application

J. Lang, L. Cheng, Z. Yu, Y. Wu, X. Wang

Center for Pure Mathematics, School of Mathematical Sciences, Anhui University, Hefei, P.R. China

Abstract: In this paper, we investigate the complete $f$-moment convergence for randomly weighted sums of extended negatively dependent (END for short) random variables. Some results obtained in this paper extend and improve the corresponding ones of P. Li, X. Li, and K. Wu [J. Inequal. Appl., 2017 (2017), 182]. As an application of our main results, we establish the strong consistency for the least square (LS for short) estimators in the simple linear errors-in-variables (EV for short) regression models and provide a simulation study to verify our theoretical results.

Keywords: complete $f$-moment convergence, randomly weighted sums, EV regression model, strong consistency.

Received: 05.02.2020
Revised: 11.08.2020
Accepted: 29.10.2020

DOI: 10.4213/tvp5399


 English version:
Theory of Probability and its Applications, 2022, 67:2, 261–281

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024